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Summary. This work is concerned with the application of  a one-channel model 
to obtaining predissociation lifetimes and transition rates in a system of crossing 
diabatic states. The calculation focuses on the first shape resonance of  the 
la2g 2ag diabatic state of  He + , which is relatively stable with respect to tunneling. 
This resonance predissociates as a result of  the la  2 2 %  state being crossed by the 
lag la  2 dissociative diabatic state near the resonance level. We have estimated its 
predissociation lifetime to be of  the order of 10 -11 S. 
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Introduction 

The importance of  the series of  avoided crossings among the potential curves of  
2 + system of  He + has been known for many years. They are intimately the Zg 

involved in the interpretation of  various features of  the elastic, inelastic and 
charge transfer collision cross sections of He( l s  a) with He+( ls )  [1]. 

As the internuclear distance (R) of  the above system decreases, the initially 
degenerate ground state separates into two diabatic states. The lower of  the two 
is the lag 2 l a  u and the higher is the ltrgltr 22 , state. The lower state goes on to 
become the 2Zu+ ground adiabatic state of  the ion. The higher state is crossed at 
Rx ~ 1.45a0 by the ltrg 22% diabatic state, which dissociates into 
He+( ls )  + He(ls2s)  [2, 3]. Because of the non-crossing rule, in an actual adia- 
batic calculation of  their potential energy curves the crossing of these two g 

2 + and 2 2 + states becomes an avoided crossing of  the corresponding 1 Eg Xg 
adiabatic states, the character of which interchanges around this point [2]. 
Similar avoided crossings are generated in the adiabatic calculation of  higher 
2S+ states because the lag hr 2 state crosses higher ltr2ntrg (n = 2, 3 . . . .  ) diabatic 
states [ 1, 2]. 

The interpretation of the above mentioned experimental data requires that 
the system has a small transition probability out of  the lag hr 2 state as R 
decreases [3]. It is therefore of  interest to calculate such a probability. To do this, 
one must at least construct all the diabatic potentials that constitute open 
channels for a given collision energy from an equal number of  computed 
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adiabatic potentials [4]. Then, using the diabatic potential matrix so con- 
structed, one can integrate the Schrfdinger equation and obtain the S matrix 
from which the transition probabilities may be obtained. 

However, if one is interested only in an order of magnitude estimate of the 
above probability, a simpler approach may be applicable. It has been shown [5] 
that under certain conditions it is possible to ignore the quantum interference 
effects and treat the problem by a one-channel model. Within this approxima- 
tion, one constructs only those pairs of diabatic states which cross in the 
vicinity of the collision energy, and computes the predissociation widths at each 
crossing either by a Landau-Zener type formula or by a golden rule expression 
as suggested by van Dischoek et al. [6]. This procedure stops when a width 
below or near an acceptable tolerance is reached, A total width is obtained by 
adding the computed partial widths; the total lifetime and transition rate are 
then computed from the total width. 

As a first step towards applying these methods in exploring the details of 
this system of crossing diabatic states, we perform here a restricted one-channel 
calculation at the energy of the first shape resonance of the la~2% diabatic 
state of He+. We aim to obtain an order of magnitude estimate of the 
predissociation lifetime of this resonance as well as an order of magnitude 
estimate of the transition rate out of the lag la  2 state, at a collision energy in 
the neighborhood of the resonance energy. These two crossing diabatic states 

2 + are constructed by an orthogonal transformation of the 1 ~g and 2 2Z+ 
adiabatic states [7]. Their crossing is the first of an infinite number of such 
crossings, but it is separated by about 6.75 eV from the rest of them. Because 
of this separation, the partial widths from the higher crossings are expected to 
be very small, and they are ignored in this work, 

Theoretical framework 

The adiabatic to diabatic transformation we employ here [7] is well known. It 
has been applied even in the absence of accurate coupling strengths [8], as well 
as in vibrational energy transfer under a model analogous to the Born-Oppen- 
heimer approximation [9]. Thus, we only sketch the main points of the theory 
as it applies to a diatomic molecule. 

Let d~(r; R) be the column vector of the adiabatic electronic eigenfunctions 
of the diatom, and let z(R) be the column vector of the corresponding radial 
eigenfunctions, r is the vector of the electronic coordinates. For simplicity, we 
have neglected the angular motion since we are concerned only with radial 
couplings. Then, the total wavefunction is 

~(r, R) = d~+(r, R)" z(R). (1) 

The Schr6dinger equation for the radial wavefunctions of the diatom in the 
adiabatic representation is given by the following well-known relation: 

2 #  d R  ~ B - V(R) + E B + ~ 2/~(R) ~ + B(R) x(R) = 0, (2) 

where 0 is the unit matrix, V is the diagonal potential matrix corresponding to 
~, E is the total energy and A and B are the matrices of the vibronic (radial) 
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coupling strengths. That is, 

= < ,ld/dRl j> and B(R)o. = <dp,[d2/dR2l~j>. 

If Eq. (2) is to be solved by the usual methods--which assume the absence 
of the first derivative term--a  transformation to a diabatic representation must 
be done. Let C(R) be such a transformation matrix. One needs as complete a 
separation between the electronic and nuclear functions as possible. Thus, one 
may write 

dp(r; R) = C(R)q(r; Ro), (3a) 

z(R) = C(R)g(R), (3b) 

where Tl(r; Ro) is a new diabatic basis evaluated at a given internuclear distance 
Ro, and g(R) is the new nuclear function containing all the R dependence of 
~(r; R). The total wavefunction must be the same in either representation. That 
is, one must have 

~'(r; R) = q+(r; 4 ) "  ;(R). 

This means that one should expect that C + • C = D (see below). Substituting Eq. 
(3) into Eq. (2) gives 

d 2 (d / d ( d2 d / 
Cd-~- i ;+2  ~ - ~ C + A . C  ~ - ~ ; + U . C ; +  B + ~ 5 + A  C ; = 0 ,  

where U(R)=  - (2#/h2)(V(R)-E n). The matrix C is now determined by the 
requirement that the first derivative term be identically zero. Thus, one must 
solve the following equation: 

d 
C(R) + A(R)- C(R) = 0. (4) 

The requirement represented by Eq. (4) has two consequences: (i) the 
solution matrix C(R) is indeed orthogonal (see appendix 2 of [7]), and (ii) for a 
complete adiabatic basis dp(r; R), it follows that 

. e  

vanishes identically (see appendix B of [9]). Then, neglecting the above term 
(even though the basis is not complete) Eq. (2) finally becomes 

d 2 
+ = 0, (5)  

where 

W(R) = C+(R) • U(R). C(R). (6) 

For a two state model one may parameterize the orthogonal matrix C with 
a sin/cos pair [7]: 

cos O(R) sin O(R) -] 
C(R) = - s in  O(R) cos O(R)_J" (7) 

Substituting Eq. (7) into Eq. (4), O(R) may be determined in terms of the Alz(R ) 
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matrix elements: 

I - sin 0 
- cos 0 

This leads to 
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cos0] 0 i0 oq[CO 0 s,n0  
--sin0 ~ =  -A12 - s i n 0  cos0/"  

O(R) = A12(R' ) dR', (8) 
o 

where Ro is the beginning of the Ai2 curve. Once 0 is determined, W(R) is given 
by Eq. (6), and it is no longer a diagonal matrix: 

Wn (R)= 1Ill (R) Cos 20(R) + V22(R) sin 20(R), 

W22(R) = V~1 (R) sin 20(R) + V22(R) cos 20(R), (9) 

W~2(R) = (Vn(R)  - V22(R)) sin O(R) cos O(R). 

Since q(r, Ro) are not eigenfunctions of the electronic hamiltonian, the diagonal 
terms of W cross at some point Rx having energy Ex; the off diagonal terms 
represent the interaction among the diagonal terms around this point. 

Methodology and results 

As mentioned earlier, the vibronic coupling strengths, AI2(R ) between the two 
lowest 2Zg + adiabatic states of He~ have been computed previously by a finite 
differences method [2]. Of necessity, only a small number of points near the 
avoided crossing have been computed. Let us denote by R,. and R F the first and 
last of these points respectively. A~2 is very close to zero at these points, and it 
has been assumed that A~2=O for R > Rf and R < Ri. This assumption is 
justified because sample calculations in this region have given nearly zero 
coupling strengths. Although d~2 has a Lorenzian shape, it has been fitted by a 
segmented quadratic spline method, and 6000 points have been generated 
between the end points Ri and Rf from the coefficients of the fit. Using Ro = Ri, 
the integration in Eq. (8) has been carried out in steps of six points by the 
trapezoid rule, giving a numerical representation of 1000 points for O(R). The 

2 + Zg 2 Zg state has been fitted by a segmented quadratic spline, while for the 1 2 + 
state a segmented cubic spline fit has been used. In all the above fits, only the 
constraint of function equality at the segment joints has been enforced, and not 
equality of first or second derivatives. 

Now, it is well known that the area under the AI2(R) curve must be equal to 
r~/2 for couplings due to variations of the CI coefficients, which is the case here. 
However, due to the limited number of calculated coupling strengths, and due to 
inaccuracies in their calculation as well as the fact that the integration can be 
carried out only between Ri and Ry, the area under this curve is not zU2 in 
practice. This generates difficulties in the calculation of the diabatic potential 
curves since at the end of the integration sin 0 ~ 1 and cos 0 ~ 0. To counterbal- 
ance this, a correction has been made at each of the 1000 points of O(R). First, 
the total area, 0t, under the A~2 curve has been obtained by an initial integration 
of A~2 between its end points. Then, the nth point obtained from the integration 
in Eq. (8), as described above, has been corrected by adding n(rc/2 - 0t)/1000 to 
it. For the fit used for A12, the correction zt/2 - 0t is quite small, and it causes the 
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diabatic curves to behave correctly; its effect on the transition rate is expected 
to be minimal. 

The potential curve of the lag la~ diabatic state generated as above is 
repulsive. On the other hand, the la22ag curve has a barrier and it can support 
a few shape resonances. The descent of the potential from the top of the barrier 
is very slow, making the barrier quite broad. Consequently, the first of these 
resonances is expected to be relatively stable as far as barrier penetration is 
concerned. Its width, Fs, is expected to be very small compared to the width of 
the Feshbach resonance, FF, generated by the crossing of these two diabatic 
states. To calculate the radial wavefunctions we employ the Numerov integra- 
tion method [10, 11]. Strictly speaking, since the Numerov method cannot be 
applied to resonances, a complex rotation method should have been used [12]; 
however, since we are interested only in an order of magnitude estimate, 
and assuming Fs ~ FF, we have approximated the potential beyond the top 
of the barrier by a straight line parallel to the R axis. This slight modification 
of the potential has converted it into a bound one, and has enabled us to 
calculate approximate energies by a variation of the Numerov method due to 
Hajj [10]. The position of the first shape resonance along with the correspond- 
ing radial wavefunction are not expected to change much because of this 
approximation. 

As shown below, both the "bound" and the continuous wavefunction as 
well as 14112 are used in a golden rule expression. Therefore, the Numerov 
integration must be done with the same mesh of points for both states. A 
uniform mesh with a step size AR = 4 x 10-4ao has been established in the 
integration of Eq. (8), and the actual computation of W~I, W22 and 14112 has 
been done only between the end points of A12 on this mesh. Outside this 
region, on a mesh generated with the same step size, we have set WI2 = 0. For 
R < Ri we have set Wll = VII and W22 = V22 while for R > Rf we have set 
W~1 = V22 and /4122= V11. Figure 1 shows the resulting diabatic potentials, 
including the approximated tail end of the quasibound one, the approximate 
position of the first resonance, and the ab initio points of the adiabatic poten- 
tials [2]. Table 1 shows a few selected values of the interaction W12. 

Table 1. Representative values of 
the interaction WI2 between Ri 
and Ry 

R (ao) W12 (a.u.) 

1.25033 0.00007 
1.29033 0.00814 
1.33033 0.01577 
1.37033 0.02063 
1.41033 0.02615 
1.44993 0.03415 
1.49033 0.02595 
1.53033 0.02112 
1.57033 0.01633 
1.61033 0.00837 
1.64953 0.00008 
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Fig. 1. The potentials involved in the calcula- 
tion: - - ,  the 1% la~ repulsive diabatic po- 
tential WH, and the modified la,22ag 
quasibound diabatic potential 14122; ----I~-, the 
interaction potential W~2; -41-- ab initio 
points for the 2 2Z+ adiabatic potential; --x-- 
ab initio points for the 1 2Sg+ adiabatic poten- 
tial; ..... the approximate energy level of the 
first resonance 

Once the diabatic potentials are computed, the Numerov integration over the 
"bound"  state gives the approximate position of  the first shape resonance, Eo, 
and the approximate bound vibrational wavefunction, (o(R), which is unit 
normalized. The integration over the repulsive potential at Eo gives the continu- 
ous wavefunction, (E (R), which is energy normalized by fitting it to the following 
asymptotic form: 

~E(R > R: ) = ~-k kR[j t (kR) cos ~t - ~t(kR) sin ~t]. 

where ~ is the phase shift for orbital angular momentum l (here l = 0), 
k = (2#Eo) 1/2 (in a.u.), Jt and ~l are the spherical Bessel and Hankel functions 
respectively, and # is the reduced mass (2.001164 x 1822.85 a.u.). Figure 2 shows 
these two normalized wavefunctions. 

Now, it is well known that for small perturbations such as W12, the golden 
rule gives an accurate estimate of the lifetime of a discrete vibrational state of  
energy E coupled to a bath of continuous states in the vicinity of  E. This is also 
applicable if the initial state is a narrow shape resonance, as is the case here due 
to the presence of a broad barrier. In the present case, the Fermi Golden Rule 
expression may be written as follows [6]: 

2~ 
k12 = -~- I(~E(R)I W12 (R)leo(R) )12. 

The density of states normally present in the above relation has been 
absorbed in the energy normalized ~E(R). Converting to atomic units results in 
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Fig .  2. The normalized wavefunctions used in 
Eq.  (10) .  They correspond to the diabatic po- 
tentials in Fig .  1: . . . . .  , the approximate 
wavefunction of the first resonance; - - ,  the 
continuous wavefunction at the energy of the 
first resonance. These functions extend only to 
the point where the wavefunction of the first 
resonance is reliable (see [10]) 

the expression 

k12 = C, 2r~ I<(e (R) IW12(R)I(o (R) )12, (10) 

where C, = 1 and k12 is in inverse atomic units of time; for kl2 in s -~ use 
Ct = 4.1341 x 1016. 

The relation (10) is symmetric with regard to the position of  the wavefunc- 
tions (no derivative is involved as is the case with adiabatic states), and 
therefore it also gives the transition rate out of  the continuous bath of diabatic 
states around E0 into the discrete state (o. 

Integration of  Eq. (10) has been carried out using the trapezoid rule. Of 
course, because of  the way W~2 has been computed, it is only in the region 
R~ < R < Rf that the integrand is not zero. The predissociation lifetime and 
width of  the first resonance are given by the usual relations: Zl2 = 1/kl2 and 
P12 = hk12 respectively, where h = 5.309 x 10 - lz  crn -1 s is Planck's constant in 
the indicated units, so that P12 is in cm -1 if k~2 is in s -1. A transition rate of  
the order of  1011 s -1 has been found, which gives a predissociation lifetime of  
the order of  10-11 s. The results are summarized in Table 2. 

The transition rate computed here is 10 4 times slower than a similar transi- 
2 + 2 + tion rate between the 2 S,g and the 1 2~g adiabatic states [13]. This is a result 

of  the strong diabaticity of  the system, which can also be seen by a rough 
Landau-Zener estimate. Such an estimate gives a single pass transition proba- 
bility between the two diabatic curves of  the order of  0.001 to 0.1 for energies 
in the range of  1 0 - 5 - 1 0  -8 a.u. above the crossing point respectively. It is this 
strong diabaticity that allows one to apply the golden rule as it has been 
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Table 2. Approximate results of the one-channel calculation. Em and 
E b refer to the energies at the minimum and at the top of the barrier 
of the la22ag state (see text for definitions of the other variables). 
The energies are relative to the ground state asymptote of 
-4.8983 a.u. 

Quantity Computed result Units 

R x 1.448 a o 

E x 0 .7604  a .u .  

E o 0 .7558 a .u .  

E m 0 .7407 a .u .  

E b 0 .8680  a .u .  
k12 0.84 x 10 tt s - 1  

"C12 1.2 × 10 -11 S 

/"12 0 .445 cr/1-1 

applied here, even though the first shape resonance lies within 214112 , which is 
the approximate gap around the avoided crossing of the two adiabatic states. 
Therefore, working within the diabatic approximation, one may take the first 
shape resonance to be a relatively stable discrete state of the diabatic potential. 
Only a high resolution experiment could reveal the adiabaticity of the system. It 
is in this sense that the golden rule has been applied here. Notice that similar 
calculations give predissociation lifetimes of the third, fourth and fifth shape 
resonances that are within an order of magnitude of the lifetime of the first 
shape r e s o n a n c e  ( 1 0 - 1 ° - 1 0  - 1 2  s ) .  These resonances lie outside the aforemen- 
tioned gap. 

Conclusion 

We have employed an orthogonal transformation to construct t h e  lag la 2 
and la22ag diabatic potential curves of He~- and their mutual interaction, 

2 + 2 + and 2 adiabatic potential curves and their radial starting from the 1 Zg Zg 
coupling strengths. The crossing of the above two diabatic states gives rise to a 
Feshbach resonance while the barrier of t h e  la226g state gives rise to a shape 
resonance. Assuming Fs ~ FF, we have approximated the shape resonance 
by a bound vibrational state. Then, via the Numerov algorithm, we have 
obtained the radial wavefunction and the approximate position of the first 
"bound" vibrational level of the la22ag state, as well as the radial wavefunction 
of the lag la~ state at the same energy level. These functions, along with the 
diabatic interaction between the two states, have been used in a golden rule 
expression which has given a predissociation lifetime of the order of 10-11 s for 
t h e  lff22ag state. 
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